
Form Approved
.TION PAGE OMB No. 0704-0188

AD-A266 296 -- ..-. ,b-- -.-- -
i~lJIJ jlj 1111 1~J JLI lJJlj JjllH j I;1~ ~j Re," n Pe0001?'-0"1O) ovt. 0C 2050

. ., , . 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

June 1993 Special Technical

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Understanding Partitions and the "No Partition"
Assumption N00014-92-J--1866

6. AUTHOR(S)

Aleta Ricciardi, Andre Schiper, Kenneth Birman

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Kenneth Birman, Associate Professor REPORT NUMBER

Department of Computer Science
Cornell University 93-1355

9. SPONSORINGiMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

DARPA/ONR AGENCY REPORT NUMBER

11 . 'S U P P L E M E N T A R Y N O T E S i H i

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

APPROVED FOR PUBLIBC REM
DtSTRtBImON UNLUMMIm I.,.

13. ABSTRACT (Maximum 200 words)

Please see page 1.

93-14729

14. SUBJECT TERMS 15. NUMBER OF PAGES

10
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNLIMITED
NSN 754-0 -25O-5500 Sthftaloa Form 29 (Rv. 2-8%

Poem tO2 ANSI aw. MIS

NO TICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

Understanding Partitions and the
"No Partition" Assumption*

Aleta Ricciardil

Andre Schiper 2 Accesion For

Kenneth Birman1 NTIS CRAý&
DTIC TAB

TR 93-1355 Unannounced
June 1993 Justfificaton

By
Distribution I

Availability Codes

Avail and; or
Dist Special

DT~IC QUALrIY - W -"

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*To appear in the Fourth IEEE Workshop on Future-Trends of Distributed Computing

Systems, Lisboa, Portugal, September 22-24, 1993.
1 Research supported by DARPA/ONR Grant N0001 4-92-J-1 866, and by grants from
IBM, HP, Siemens, and GTE.
20n leave from Ecole Polytechnique Federale de Lausanne, Switzerland. Research
supported by the "Fonds national suisse" and OFEB under contract number 21-
32210.9, as part of the European ESPRIT Basic Research Project Number 6360
(BROADCAST).

Understanding Partitions and the "No Partition" Assumption"

Aleta Ricciardi', Andr6 Schiper 2 , Kenneth Birman'

Department of Computer Science, Upson Hall
Cornell University

Ithaca, NY 14853-7501

Abstract

The paper discusses partitions in asynchronous message-passing systems. In such systems slow pro-
cesses and slow links can lead to virtual partitions that are indistinguishable from real ones. This raises
the following question: what is a "partition" in an asynchronous system? To overcome the impossibility
of detecting crashed processes in an asynchronous system, our system model incorporates a failure sus-
pector to detect (possibly erroneously) process failures. Based on failure suspicions we give a definition
of partitions that accounts for real partitions as well as virtual ones. We show that under certain as-
sumptions about the process behavior, any incorrect failure suspicion inevitably partitions the system.
We then show how to interpret the "absence of partition" assumption.

1 Introduction

The paper considers message-passing asynchronous systems in which processes fail by crashing. These
systems are necessarily concerned with network partitions, and as systems grow to larger and larger numbers
of nodes, handling partitions becomes more pressing. Despite this, researchers commonly assume networks
will not partition because this greatly simplifies protocol development. Since protocols based on the "absence

of partitions" assumption are correct unly to the extent that the assumption is valid, it is vital to know

whether the assumption is justified, and what the consequences are when it is not.

Unfortunately "absence of partitions" is a very imprecise specification. It is usually understood to be either
(1) the absence of link failures, or (2) that any two operationtl processes p and q can always communicate.
In asynchronous systems communication delays are unbounded, and local clock rates may drift arbitrarily

making it impossible to determine whether a process's lack of response is caused by a link problem (failed
or heavily loaded) or the process itself (crashed or very slGw). In this way, slow processes and links can lead
to virtual partitions, which are indistinguishable from real partitions. A protocol assuming the "absence
of partitions" must exclude these virtual partitions as well as physical ones. This paper gives a precise
definition of partition, accounting for the nature of asynchronous systems by covering virtual partitions as
well as physical ones.

*To appear in the Fourth IEEE Workshop on Future-Trends of Distributed Computing Systems, Lisboa Portugal, September

22-24, 1993.
' Research supported by DARPA/ONR Grant N00014-92-J-1866, and by grants from IBM, HP, Siemens, and GTE.
20n leave from Ecole Polytechnique Fiddrale de Lausanne, Switzerland. Research supported by the "Fonds niational su-

isse" and OFEB under contract number 21-32210.9, as part of the European ESPRIT Basic Research Project Number 6360
(BROADCAST).

We are concerned with distributed fault-tolerant applications. Fault-tolerance can be understood in two
ways, meaning either (1) that failures will not cause the application to take unsafe actions, or (2) that tile
application is able to make safe progress even if (some) processes crash. The first interpretation considers
fault tolerance as a safety issue only; the second adds a fiveness requirement to the safety issue. We consider
the latter. Tc ;llustrate the liveness issue, consider mutual exclusion implementCd using a token If the token
holder process crashes, liveness requires that the token be regenerated.

In these contexts, satisfying the liveness requirement raises the issue of detecting process failures, and leads
us to introduce a mechanism for suspecting failures. This mechanism, associated to each process p. is called
the failure suspector FS(p). The liveness requirement just described translates to a liveriess requ~rement
for our failure suspector: FS(p) is required to eventually detect each real crash. Unfortunately the price
of liveness is accuracy: in requiring bounded-time detection of true crashes we necessarily risk erroneously
suspecting non-crashed processes. While a discussion of handling inaccurate failure suspicions is beyond the
scope of the paper, understanding one key issue will help in understanding the process behavior considered
in Section 2. There are two ways to handle the possibility of inaccurate failure suspicions. Consider two
processes p and q, and assume that p has been notified by FS(p) that q has crashed. One alternative for
p is to eventually adopt the failure belief as being correct. This allows p to take any actions required by
q's failure (for example to regenerate the token if q was the token holder). In this model, failure beliefs
become stable. The other choice is for p to be permitted to "change its mind" regarding q's failure. In this
second model failure beliefs are not stable, hence it is inappropriate to take actions that would be unsafe
if the failure is not real. For example, in this model, p could not safely regenerate a token held by q after
suspecting q's failure, because the suspicion couild later provc to be incorrect.

The "stable failure" model has, for example, been adopted by the Isis system 11], whereas the "non-stable
failure" model is considered in [3, 2]. The "stable failure" model is often necessary in building live, fault-
tolerant applications. We saw this above in the case of token regeneration, but the same issues arise in many
problems, such as primary-backup computing, and replicated data management. To achieve both liveness
and safety, we must overcome the inaccuracy of failure beliefs with some form of group-wise consistency: if
p incorrectly suspects q to have failed, and yet wants to take a safe action related to q's failure, p must be
ensure that its belief in q's faultiness will be shared by other processes with which it subsequently interacts.
In particular, if p observes the failure of q and then communicates with r, a consistency goal might be that
r will also observe the failure of q before it delivers this message.

To summarize, the stable-failure belief model achieves liveness (in a probabilistic sense); safety is ensured by
requiring some form of consistency among failure beliefs.

Further implications of failure belief stability on processes behavior is discussed in Section 2, which presents
the system model and introduces our failure suspector. Section 3 defines partitions and proves that a single
incorrect failure suspicion leads, inevitably, to a partition. This result makes the "no partition" assumption
questionable. Section 4 discusses how weakening the system model while strengthening the failure suspector
can prevent partitions. Unfortunately, the the stronger failure suspectors are not implementable, in even
the barest model of asynchrony. Section 5 concludes the paper by relating this back to the no-partition
assumption.

2 System model and Failure Suspector

The system model consists of a name space of process identifiers, Proc = {Pl,P2,...}. The name space is
infinite to t.,,,del infinite executions in which processes continually fail and recover, though at any point
in time there are only a finite number of executing processes. For the processes in this oct, we assume

2

a completely-connected network of channels. Processes communicate only by passing messages over these
channels. The system has no global clock and message transmission delays are unbounded. Processes fail
by crashing, which we model by the distinct event crash; we model the recovery of a process by assigning it
a new identifier. Any process p may send a message mi to any process q, sendi,(q, rr.), deliver a message tn'
sent by some process r, dlvrp(r, mn'), and perform local computation. A process history is a linear sequence
of events with a unique start event, in which e' denotes the xh event p executes. A system run is a tuple
of infinite process histories,' one for each proccss that executes. A cut is a finite prefix of a run.

As in [5], event eq of process q directly precedes event ep of process p in run p (written C, er) if either (I1

eq = sendq(p, m) and e, = dlvrp(q, in) in p, or (2) p = q, eq = ', and e = e in p's execution history in p.

Event e, precedes event ep in p (written eq -- p e.) if they are the beginning and end of a chain of I-. -related
events. Hereafter, we do not note the run explicitly, unless necessary. The logical formula I-BEFORE(ep, eq)I

holds if and only if ep-.Leq, whereas the formula BEFORE(ep, eq) holds if ep - eq. When ep is an event in cut
c and BEFORE(eq, ep) holds on c, then c is causally consistent if and only if eq is also an event in c.

2.1 The Failure Suspector

Crash failures are surprisingly difficult to handle in asynchronous systems. Fischer et al. [4] show that,
because it is impossible to distinguish a crashed process from one that is just very slow, any problem
requiring "all correct processes" to take some action cannot be solved deterministically. One way around
this is for asynchronous systems to incorporate a mechanism for suspecting failures and a policy for handling
failure suspicions [7]. We consider a failure suspector associated to each process p, denoted FS(p). When'
FS(p) suspects process q, it causes p to execute the event faultyp(q). The following formulas will be useful 2.

* ALIVEp(q) holds once p is aware of q's existence3 and until FS(p) suspects q.

* FAULTYp(q) holds once p executes faultyp(q).

* CRASHEDP holds as soon as p has executed the local event crashp. It is a stable formula.

To ensure fault-tolerant applications are live, we need only require that failure suspectors eventually suspect
true crashes. In asynchronous systems this takes the following form: if there is some point in p's execution
after which q does not directly affect p, then FS(p) will suspect q faulty, or p will eventually crash. Note that
FS(p) is easily implemented, for example with local time-outs. Note also, that since FS(p) operates along
with p it can only guess whether q will ever directly affect p; it may use sophisticated techniques, but it can
only approximate with probability whether q is crashed. As a result FS(p) will make erroneous suspicions.

'We make histories of crashed processes infinite by appending infinitely many cresh events.
2 Formulas are evaluated on consistent cuts to better model asynchronous systems. The basic formulas are propositional.

Given formula W, and consistent cut c the tense logic formulas are

"* Ow: wp is true on c and all future cuts,

"* OC: in every run that includes c, W holds at some future cut.

To distinguish logical formulas from events, formulas are written in SMALL CAPS. For example the formula SENDp(q, m) holds
along c if and only if the last event p executed in c was -e4dp(q, m)).3 We do not discuss process creation and incorporation into the set of operational processes.

3

FS(p) Liveness. For all executions and all rrocesses q, unless there are an infinit- number of event-pairs

satisfying eq---ep, eventually FS(p) suspects process q. Formally, define the set of directly-related event pairs
between q and p as :

C ausesp(q,p) = (eeq.e) y t q , e I

If this set is finite, eventually p suspects q or p crashes:

I Causesp(q,p) I < =ý, C>FAULTYp (q) V OCRASHEDp

FEND

We are not concerned with how FS(p) is implemented, only that it be live.

2.2 Other System Model Properties

Processes in our system model are also subject to certain constraints. As discussed in Section 1 these arise
from the liveness requirements of the applications and the impossibility of accurately detecting a process-
crash. The liveness requirement led us to adopt the "stable failure" model. Stability of failure beliefs is our
first process property.

Failure Belief Stability. A failure belief once adopted is true forever: FAULTYp(q) =:ý OFAULTYp(q).

This has an immediate consequence for channel behavior: once p believes q faulty, it neither accepts further
messages from q, nor sends further messages to q. Is this reasonable? Recall the liveness requirement put

on the applications we consider. Assume that FAULTYp (q) holds. This might lead p to take some actions
A in order to recover from q's suspected failure. Consider now a message m from q, received by p once
FAULTYp(q) holds. Accepting m might lead p to execute an action A' inconsistent with action A. To avoid
this type of inconsistency (without forcing p to crash or inspect messages' contents before delivering them)
p rejects any fut.'ther messages from q once FAULTYp(q) holds. That p acts symmetrically in not sending to
q further messages upon believing q faulty is reasonable. This lead to the second process property.

Channel D.sconnect:

FAULTYp(q) =:O (O-I-DLVRp(q,m) A O'-SENDp(q, m)).

Toward achieving failure belief consistency, we introduce a third process property. We motivated the need
for failure belief consistency as a consequence of the inaccuracy of any live failure detection mechanism.
Differing failure beliefs could easily result in unsafe (i.e. inconsistent) actions. Safety can be regained if
some form of consistency among failure beliefs is achieved. This is precisely the role of the gossip property.

Gossip. Failure beliefs propagate along causal chains of events. For processes p, q, and r:

BEFORE(fauttyp (q), ep) A 1-BEFORE(ep, er) =::

BEFORE(faulhy, (q), e,) V 1-BEFORE(e7 , faully,(q))

In summary the liveness and safety requirements put on the fault-tolerant distributed applications we have
in mind, led to three system process requirements: stability of failure beliefs, channel disconnect, and gossip
of failure beliefs.

4

3 From Incorrect Failure Notifications to Partitions

We now show that given the system model and failure suspector just described, partitions are unavoidable
We introduce the ISOLATED() property, define partitions, and then prove the result.

Definition [ISOLATED(S)] Given S a subset of Proc(c), ISOLATED(S) holds on c if and only if every process
considered alive by some p E S, is also in S:

ISOLATED(S) I A A (ALIVEp(q) =* q E S)
pES qEProc(c)

If ISOLATED(S) holds, the processes in S believe themselves to be the only live processes in the system. With
this definition, it is natural to declare a system partitioned exactly when there are at least two disjoint
subsets that each believe themselves to be the only live processes in the system.

Definition [Partition] A partition exists along consistent cut c if at least two non-null, disjoint subsets of
Proc(c) are isolated. END

We now show that a single incorrect failure belief partitions the system.

Proposition 3.1 [Failure Belief Propagation] If p believes q faulty then eventually every other process r
either believes q faulty, oelieves p faulty, or crashes:

FAULTYp(q) =: 0(FAULTYr(q) V FAULTY, (p) V CRASHED,)

PROOF Let ep be the event faultyp(q). Let e, 0 crash,, not be causally dependent on ep (that is,
-IBEFORE(ep, e,)). Then either (1) there is some future event e' such that e--, e' or, (2) there will
never be a causal relation between ep and any future event on r.

Clause (1) is the Gossip premise, in which case FAULTY,(q) holds immediately after e', while clause (2) is
the premise of FS(r) liveness. Thus rAULTY,(p) eventually holds, or r crashes. NED

Proposition 3.2 [Failure Reciprocity] If p believes q faulty, then eventually either q believes p faulty, or q
crashes:

FAULTYp(q) ::€ 0(FAULTYq(p) V CRASHEDq).

PROOF Let ep be the event faultyp(q). To prove reciprocity (via FS(q) Liveness) we must show that no
p-event on p after ep directly precedes an event on q. Clearly, this cannot happen without p violating Channel
Disconnect by sending to q once it believes q faulty. Q•D

In other words, failure reciprocity is inevitable if any failure suspicion is incorrect. The following proposition
shows that such a mistake partitions the system.

5

Proposition 3.3 lIp erroneously suspects q faulty, but neither q nor p ever crashec,, then eventually there

are at least two disjoint suboets, S and T, such that p E S. q E T, ISOLATED(S) and IVOLATED(T).

PROOF Rename q qo and let c be the consistent cut along which FAUC'Yp(qu) initially holds, and define
A-Setp(c) to be all processes p believes alive at c.

Once FAULTYp(qo) holds, Gossip means that eventually every r E A-Setp(c) either adopts FAULTY,(qI),

crashes, or believes FAULTY,(p). Without loss of generality, assume only p gossips faulty(qo), and let c, I,

the consistent cut at which faulty(qo) is gossiped (as far as possible) to the members of A-Setp(c). Let S1,
(along ci) be the subset of A-Setp(c) that adopted FAULTY(q0), with the others having either crashed or

adopted FAULTY(p):

S1 = {r I FAULTYr(qo) A -FAULTYr(p) A -CRASHEDr}.

If SI is not isolated then there is some r E S, such that ALIVEr(ql) holds at c, but q, ý S 1 . Since faulty(qo)

is fully gossiped, the only reasons this q, would not have adopted FAULTYq, (qo) are (1) it already believed

FAULTYq, (p), or (2) ql had crashed. In either case FAULTYp(qi) eventually holds - in the first case by

reciprocity, and in the second by FS(p) liveness.

Now, p must gossip faulty(qi), so let c 2 and S2 be c, and S after having gossiped qi's faultiness. We can

continue in this way: any process qi that did not adopt p's belief in the faultiness of process qi-I1 must either

be crashed or believe p faulty. Eventually, some Sk is isolated; in the worst case Sk is the singleton {p}.

Take S = Sk.

Analogously, reciprocity means that FAULTYq. (p) eventually holds, and we can construct T, as we did for S,

from A-Setq 0O.

To see that the two isolated sets are disjoint note that r E S = FAULTYr (qo). Reciprocity means that

FAULTYq0 (r) eventually holds, and construction of T ensures r V T. QED

Since we can never guarantee the failure suspectors will not make mistakes, the "no partition" assumption

is invalid in the system model considered

4 Understanding the No Partition Assumption

Given Proposition 3.3 it is important to know how an incorrect failure suspicion partitions the system, and

whether we can alter our model to prevent partitions given the inevitability of incorrect suspicions.

From the definition of ISOLATEDO, partitions occur when failures are reciprocated. So assuming FAULTYp (q)

holds erroneously, how can q be prevented from believing FAULTY,(p)? Since we cannot sacrifice FS(q)

liveness, we are left with three choices:

1. Force q to crash before it believes and is able to propagate FAULTY(p). Lacking an omniscient observer,

only p can attempt to cause q to crash because only p knows it executed faultyp(q). Unfortunately,

the absence of synchronization mechanisms means p can never ensure that any command telling q to

crash itself will arrive at q before q reciprocates with (and propagates) faultyq(p). 4

2. Force failure suspectors to attain a quorum-style agreement on suspicions before actually emitting
the faulty,() suspicion. This is done in [6, 71 where the quorum is a simple majority. Processes in a

4 This strategy will not preclude permanent partitions that arise from temporary link failures.

6

majority subset can take further actions, while those in the minority cannot. Whether a majority can

be obtained determines whether the system can progress. This is further discussed in Section 4.1

3, Concede failure belief stability at the expense of guaranteeing system progress. We explore this option

in Section 4.2.

4.1 The Primary Partition Model

The "primary partition" model is one in which the system is allowed to partition, but one assumes that

there is always an identified primary partition that is unique, in being the only partition so designated,
and in which decisions can be made on behalf of the system as a whole, without risk that contradictory

decisions will be made in other partitions. The primary partition model is often considered weaker than the
"no partition" model: the former allows progress in the primary partition, while the latter would not allow

progress if any partition were ever to form.

Specifically, neither the no-partitions model nor the primary-partition model can guarantee progress (of

the type of distributed problems we are concerned with) in situations where consensus cannot be solved.

Since the primary-partition model ensures liveness in situations where the no-partitions model would not, we

recommend that the primary partition model be assumed in most algorithms that make assumptions about

partitioning.

4.2 Conceding Failure Belief Stability

In conceding failure belief stability we no longer need the Channel Disconnect and Gossip properties. Channel

Disconnect was introduced as a consistent consequence of failure belief stability. Gossiping is used to bring

about consistency of failure beliefs, but lacking stability a process may change its belief immediately after

being gossiped another's failure: consistency of failure beliefs is no longer an issue.

In this section, we assume neither stability, disconnect, nor gossip and derive addit;nnal requirements on the

system's failure suspectors that would preclude partitions. In particular, partitions cannot exist if for all
cuts, c, some process is believed alive by every process in Proc(c).

Proposition 4.1 If on all cuts c, all failure suspectors agree on some subset of non-faulty processes, then
partitions will never occur.

PROOF (By contradiction) Let F-Setp(c) = A-Setp(c); then Proc(c) = A-Setp(c) U F-Setp(c). A partition on
a cut c means that there are (at least) two disjoint sets that are both isolated on c. Call them S and T.

By definition

S = U A-Sett(c) and T = U A-Set,(c).
PES qET

De Morgan's Law give S U T = Proc(c) t*

n F-Setp(c) U n F-Setq(c) = Proc(c).

PES 9ET

7

T

S

Figure 1: Intersecting Isolated Sets Must Form a 'Star'

Thus, Proc() is partitioned at c if and only if every process in the system is believed faulty by every member
of some isolated set. QED

In summary, preventing partitions requires that some process in the system is not believed faulty by some
member of every isolated set. The implications of this are stated in Propositions 4.2 and 4.3.

Proposition 4.2 The intersection of isolated sets is isolated.

PROOF Let S andT be isolated and consider p E S nl T, and r E A-Set.(c). Because S is isolated and p E S,
r must also be in S. Similarly, ISOLATED(T) and p E 1 give r E T. QE

Now consider three isolated sets S, T, and U such that S n -r 6 0, and T n U 6 0. Unless these intersections
also intersect a partition exists. In other words, a partition will not exist as long as isolated sets form a
'star', as depicted in Figure 1.

Proposition 4.3 Let S1, S2, ... , Sn enumerate the isolated sets along cut c. Then no partition exists if and
only if one of them is the center of a 'star'. That is, 3l < x < n : S, = S1 n 2n .S.. n S,.

PROOF Follows easily from the definition of partition and Proposition 4.2. QED

We say Proc(c) is degraded if Proc(c) is carved into isolated subsets but is not partitioned. It is fully-degraded
if I Proc(c) I = n, there are n isolated subsets such that n - 1 isolated subsets are process pairs, and one
isolated subset "3 a singleton. This represents the worst-case, non-partitioned separation (or, equivalently,
belief consistency) between all process pairs.

4.3 Interpreting Partitions and Distributed Consensus

The star formation is exactly analogous to Chandra et.al.'s work on Weak Failure Suspectors [3, 2]. This
work proves that if some functional process is not suspected (for a sufficiently long period of time) by every
other functional process, Distributed Consensus can be solved. This corresponds, in our terminology, to the
absence of a partition. Essentially, the failure suspector OW requires eventual absence J partitions for a
critical period of time (i.e. long enough to run their protocol). Note that the results of (3, 2] also hold in
the primary partition of a primary partition model.

8

5 Conclusion

The paper has given a precise definition of partition, accounting for the nature of asynchronous systems
by covering virtual partitions as well as physical ones. The paper has further considered two classes of
fault-tolerant distributed applications, characterized by the stability vs. non-stability of failure beliefs. The
stable-failure system model has been completed by process properties that follow logically from the stability
requiremeit. They lead to the following result: a single incorrect failure suspicion already leads to partition
the system. The only safe way to avoid partitions is to require the failure suspectors to attain a quorum
agreement on suspicions before actually emitting the faully(suspicion. As any so called membership service
assumes the stable-failure system model, any membership service has to include such a quorum condition.

The paper has also shown that absence of partition is obtained by requiring that every failure suspector
'agree' on a subset of non-faulty processes. This is a valid "no partition" assumption in the "non-stable
failure" system model. Finally, the paper suggests that the "no-partition" assumption be related to a
"primary-partition" assumption when possible. Although a system that takes this approach will still be
unable to make progress in runs for which consensus could not also be solved, such an assumption is 'ess
restrictive, mo-e practical, and hence preferable to a no-partitions one.

References

[1] K. P. Birman. The Process Group Approach to Reliable Distributed Computing. Technical Report
TR-91-1216, Cornell University, July 1991. To appear in CACM.

[2] T. D. Chaidra and V. Hadzilacos andS. Toueg. The Weakest Failure Detector for Solving Consensus.
In Proceedingv of the 11t Annual A.C.M. Sympgsium on Principles of Distributed Computing, pages
147-158. ACM, August 1992.

[3] T. D. Chandra and S. Toueg. Unreliable Failure Detectors for Asynchronous Systems. In Proceedings
of the Tenth Annual A.C.M. Symposium on Principles of Distributed Computing, pages 325-340. ACM,
August 1991.

[4] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of Distributed Consensus with One Faulty
Process. Journal of the Association for Computing Machinery, 32(2):374-382, April 1985.

[51 L. Lamport. Time, Clocks and the Ordering of Events in a Distributed System. Communications of the
A.C.M., 21(7):558-565, 1978.

[6] A. flicciardi and K. Birman. Using Process Groups to Implement Failure Detection in Asynchronous
Environments. In Procedings of the Tenth Annual A.C.M. Symposium on Principles of Distribute,' Com-
puting, pages 341-351. A.C.M., August 1991.

[71 A. M. Ricciardi. Tse Asynchronous Membership Problem. .0hD thesis, Cornell University, January 1993.

9

